欢迎您,这里是天津润莱德进出口有限公司

全国咨询热线:

H65 Brass Bar

通过专业,获得尊重。通过专注,赢得信任。通过服务,我们共赢!

当前位置:首页 » 产品中心 » Brass Series
详细介绍:

Principles of Brass Bar Manufacturing  

(1) All elements without exception reduce the electrical and thermal conductivity of copper bars. Elements that form solid solutions in copper bars cause lattice distortion, leading to wave scattering during the directional flow of free electrons, thereby increasing resistivity. Conversely, elements with little or no solid solubility in copper bars have minimal impact on conductivity and thermal conductivity. It is particularly important to note that some elements exhibit a sharp decrease in solid solubility in copper bars as temperature drops, precipitating as pure substances or metallic compounds. This not only strengthens the copper alloy through solid solution and dispersion but also has a limited effect on reducing conductivity. This is a crucial alloying principle for developing high-strength, high-conductivity alloys. Specifically, alloys composed of iron, silicon, zirconium, and chromium with copper are extremely important high-strength, high-conductivity alloys. Since the effects of alloying elements on copper bar properties are cumulative, the Co-Cr-Zr alloy system is renowned for its high strength and conductivity.  

(2) The microstructure of copper-based corrosion-resistant alloys should be single-phase to avoid electrochemical corrosion caused by secondary phases. Therefore, alloying elements added to copper bars should have high solid solubility or even be infinitely miscible. Industrially applied single-phase brass bars, bronze bars, and cupronickel bars exhibit excellent corrosion resistance, making them essential materials for heat exchangers.  

(3) Copper-based wear-resistant alloys contain both soft and hard phases. Thus, during alloying, it is essential to ensure that the added elements not only dissolve in the copper bars but also precipitate hard phases. Typical hard phases in copper alloys include compounds such as Ni₃Si and FeAlSi. In recent years, developed automotive synchronizer gear alloys feature a soft α-phase and a hard β-phase, with the α-phase content preferably not exceeding 10%.  

(4) Copper alloys with polymorphic transformations in the solid state exhibit damping properties, such as the Cu-Mn alloy system. Alloys that undergo thermoelastic martensitic transformations in the solid state possess shape memory properties, such as the Cu-Zn-Al and Cu-Al-Mn alloy systems.

黄铜棒制造的原则

(1)所有元素都无一例外地降低铜棒的电导率和热导率,凡元素固溶于铜棒中,造成铜棒的晶格畸变,使自由电子定向流动时产生波散射,使电阻率增加,相反在铜棒中没有固溶度或很少固溶的元素,对铜棒的导电和导热影响很少,特别应注意的是有些元素在铜棒中固溶度随着温度降低而激烈地降低,以单质和金属化合物析出,既可固溶和弥散强化铜棒合金,又对电导率降低不多,这对研究高强高导合金来说,是重要的合金化原则,这里应特别指出的是铁、硅、错、铬四元素与铜棒组成的合金是极为重要的高强高导合金;由于合金元素对铜棒性能影响是叠加的,其中CoCr —Zr 系合金是著名的高强高导合金;
(2)铜基耐蚀合金的组织都应该是单相,避免在合金中出现第二相引起电化学腐蚀。为此加人的合金元素在铜棒中都应该有很大的固溶度,甚至是无限互溶的元素,在工程应用的单相黄铜棒、青铜棒、白铜棒都具有优良的耐蚀性能,是重要的热交换材料。
(3)铜基耐磨合金组织中均存在软相和硬相,因此在合金化时必须确保所加人的元素除固溶于铜棒之外,还应该有硬相析出,铜棒合金中典型的硬相有Ni3Si 、FeALSi 化合物等。近年来开发的汽车同步器齿轮合金中a 相为软相,负相为硬相,a 相不宜大于10 %。
(4)固态有多晶转变的铜棒合金具有阻尼性能,如Cu 一Mn 系合金,固态下有热弹性马氏体转变过程的合金具有记忆性能,如Cu 一Zn 一Al 、Cu 一Al 一Mn 系合金。
(5)铜棒的颜色可以通过加人合金元素的办法来改变,比如加人锌、铝、锡、镍等元素,随着含量的变化,颜色也发生红一青一黄一白的变化,合理地控制含量会获得仿金材料和仿银合金。
(6)铜棒及合金的合金化所选择的元素应该是常用、廉价和无污染的,所加元素应该本着多元少量的原则,合金原料能够综合利用,合金应具有优良的工艺性能,适于加工成各种成品和半成品。
上一个产品:H63 Brass Bar
下一个产品:H68 Brass Rod